Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Spontaneous ionization/breakup of water at the surface of aqueous droplets has been reported with evidence ranging from formation of hydrogen peroxide and hydroxyl radicals, indicated by ions atm/z36 attributed to OH⋅‐H3O+or (H2O‐OH2)+⋅ as well as oxidation products of radical scavengers in mass spectra of water droplets formed by pneumatic nebulization. Here, aqueous droplets are formed both by nanoelectrospray, which produces highly charged nanodrops with initial diameters ~100 nm, and a vibrating mesh nebulizer, which produces 2–20 μm droplets that are initially less highly charged. The lifetimes of these droplets range from 10s of μs to 560 ms and the surface‐to‐volume ratios span ~100‐fold range. No ions atm/z36 are detected with pure water, nor are significant oxidation products for the two radical scavengers that were previously reported to be formed in high abundance. These and other results indicate that prior conclusions about spontaneous hydroxyl radical formation in unactivated water droplets are not supported by the evidence and that water appears to be stable at droplet surfaces over a wide range of droplet size, charge and lifetime.more » « lessFree, publicly-accessible full text available December 16, 2025
-
Free, publicly-accessible full text available January 29, 2026
-
Accelerated reactions in microdroplets have been reported for a wide range of reactions with some microdroplet reactions occurring over a million times faster than the same reaction in bulk solution. Unique chemistry at the air–water interface has been implicated as a primary factor for accelerated reaction rates, but the role of analyte concentration in evaporating droplets has not been as well studied. Here, theta-glass electrospray emitters and mass spectrometry are used to rapidly mix two solutions on the low to sub-microsecond time scale and produce aqueous nanodrops with different sizes and lifetimes. We demonstrate that for a simple bimolecular reaction where surface chemistry does not appear to play a role, reaction rate acceleration factors are between 10 2 and 10 7 for different initial solution concentrations, and these values do not depend on nanodrop size. A rate acceleration factor of 10 7 is among the highest reported and can be attributed to concentration of analyte molecules, initially far apart in dilute solution, but brought into close proximity in the nanodrop through evaporation of solvent from the nanodrops prior to ion formation. These data indicate that analyte concentration phenomenon is a significant factor in reaction acceleration where droplet volume throughout the experiment is not carefully controlled.more » « less
An official website of the United States government
